Back
Peer-Reviewed Research

Wave Anomaly Detection in Wave Measurements

Sofar Ocean

This paper was written by J. J. Voermans, A. V. Babanin, C. Kirezci, J. T. Carvalho, M. F. Santini, B. F. Pavani, and L. P. Pezzi.

Abstract

Quality control measures for ocean waves observations are necessary to give confidence of their accuracy. It is common practice to detect anomalies or outliers in surface displacement observations by applying a standard deviation threshold. Besides being a purely statistical method, this quality control procedure is likely to flag extreme wave events erroneously, thereby impacting higher-order descriptions of the wave field. In this paper we extend the use of the statistical phase-space threshold, an established outlier detection method in the field of turbulence, to detect anomalies in a wave record. We show that a wave record in phase space (here defined as a diagram of displacement against acceleration) can be enclosed by a predictable ellipse where the major and minor axes are defined by the spectral properties of the wave field. By using the parameterized ellipse in phase space as a threshold to identify wave anomalies, this is a semiphysical filtering method. Wave buoy data obtained from a mooring deployed near King George Island, Antarctica [as part of the Antarctic Modeling Observation System (ATMOS)], and laser altimeter data obtained at the Northwest Shelf of Australia were used to demonstrate the functioning of the filtering methodology in identifying wave anomalies. Synthetic data obtained using a high-order spectral model are used to identify how extreme waves are positioned in phase space.

Sofar in the News
In the News
May 4, 2024
Buoys to help increase safety and understand erosion
In the News
May 1, 2024
Subsistence hunters measure wave height and use an app to predict conditions at sea
In the News
February 26, 2024
Better, Faster, Sooner: Voyage optimization goes digital

Related Stories